Numbers

Chapter 1

Class 1

Sets \rightarrow

$$
21 \div 7+6-5 \times 3=-6
$$

Ratios EPropartion

$$
9-15=-6
$$

Profits \& Loss.
Ruind bradet
small brackt

$$
\begin{array}{ll}
& 12-[6 \div 3+\{8 \div 2(8-6)\}] \\
\Rightarrow & 12-[2+\{8 \div 2 \times 2\}] \\
\Rightarrow & 12-[2+8] \\
\Rightarrow & 12-10 \\
\Rightarrow & 2=
\end{array}
$$

[] Square bradot \rightarrow Big trachat.

$$
\} \rightarrow \text { (urly brachat }
$$

$$
\rightarrow \text { Braces }
$$

Prime nos. lass than 20.

$$
\begin{aligned}
& 2,3,5,7,11,13,17,19 \\
& \operatorname{LCM}(12,16) \\
& \text { LCM }(48,72)=\begin{array}{l}
2 \times 2 \times \underline{2 \times 2} \times 3 \times 3=144 \\
16 \\
\times 9 \\
144
\end{array}
\end{aligned}
$$

$\operatorname{LIn}(96,108,120) \quad$ shat-division muthod

$$
\begin{aligned}
2 & (96,108,180 \\
& \frac{2^{5} \times 3^{3} \times 5^{1}}{32 \times 27 \times 5} \\
& \Rightarrow 4320
\end{aligned}
$$

$$
H C F(60,72)
$$

$$
\begin{aligned}
H C F & =2 \times 2 \times 3 \\
& =12
\end{aligned}
$$

$$
\operatorname{HCF}(56,84,154)=2 \times 7=14
$$

2	$56,84,154$	
7	$28,42,77$	
	4,6,	11

Fractions

$$
\begin{aligned}
& \frac{7}{5} \div \frac{28}{40} \\
& \frac{7}{\frac{7}{5}+\frac{7}{5}}+\frac{7}{5} \times 3=\frac{21}{15} \\
& =\frac{7+2}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{7}{5} \times \frac{15}{14}=\frac{1 \times 15)^{3}}{(5 \times 14}=\frac{1 \times 3}{1 \times 2}=\frac{3}{2} \\
& \frac{7}{5} \div \frac{28}{40}=\frac{71}{45} \times \frac{40^{2}}{28} \\
& \frac{7}{4} 1 \times 2 \\
& 1 \times 1
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{HCF}(135,180) \\
& \operatorname{HCF}(217,385,735)
\end{aligned}
$$

Class 2

$$
201859
$$

Place value and face value $\frac{1}{1} 8$ in the above no.?
$\perp \times 100=800$$\frac{8}{1}$
$\frac{1 \text { Mega } \rightarrow 10^{6}}{100} \rightarrow 1000000$
1 Googot. $\rightarrow 10^{100}$
1 Googelplex $\rightarrow 10^{\text {googrl }} \quad(10)^{100^{100}} \rightarrow 10^{(1000 \ldots .100 \text { zeron })}$
Search Engine: Google

Misspeling of the word Gougol

Integer

Natural Number:
\rightarrow Counting number

$$
\stackrel{\text { eq }}{\Rightarrow} 1,2,3, \ldots, \infty
$$

Whole Number: Zero and natural numbers together are called whole number

$$
\stackrel{\text { day }}{ } 0,1,2,3,4, \ldots, \infty
$$

Integers
\rightarrow Whole nos. + all negative number

$$
\text { c }-\infty \ldots,-3,-2,-1,0,1,2,3, \ldots+\infty
$$

(11) If the temperature above freezing point $\left(0^{\circ} \mathrm{C}\right)$ is represented by +ie number, then the temp. below freezing print is represented by negative number (negative integer)
for eq. $13^{\circ} \mathrm{C}$ above freezing point $\Rightarrow \quad+13^{\circ} \mathrm{C}$
$13^{\circ} \mathrm{C}$ below freezing point $\Rightarrow-13^{\circ} \mathrm{C}$

Class 3

Reference Point

Representation of Integers on number-line
Ascending order

Number line

Reference point / Storting point (origin)

All non-negetive inters: $[0,1,2,3, \ldots . \infty]$
All positive integers: $[1,2,3,4, \ldots \infty]$
All ron-positive integers: $[0,-1,-2,-3, \ldots \infty]$

Addition and Subtraction of Integers

$$
+7=7
$$

(1) Add two positive integer.

$$
(+2)+(+5)=2+5=7
$$

(11) Add a negative ivityer to a positive integer.

$$
\begin{aligned}
(+7){\underset{\Theta}{t}}_{+\left(\frac{-2}{1}\right)}^{\ominus} & =7-2=5 \\
&
\end{aligned}
$$

(ii)

$$
\begin{aligned}
7+(-9) & =7 \Theta 9 \\
& =-2
\end{aligned}
$$

(iii) $(-7)+(-5)=-\underline{-7-5}$

(Iv) $\left.\begin{array}{rl}(-15)+(-19) & =-15-19 \\ & =-34\end{array}\right] \begin{aligned} & \text { Add the nos. and put } \\ & -v e \text { sign. }\end{aligned}$
(v) $\xlongequal[\underline{-11}]{\underline{-}}+5$

$$
\begin{aligned}
& \Rightarrow \quad-13+2=-11 \\
& \Rightarrow \quad-\frac{17}{\uparrow}+\frac{25}{\uparrow}=+8 \\
& =8
\end{aligned}
$$

(v1) $-6=(-11)=-6+11=5$

$$
\begin{aligned}
& 7-\underbrace{(-10)}=7+10=17 \\
& -12-(19)=-31 \\
& -12-(-19)=-12+19=7
\end{aligned}
$$

Class 4

1.

$$
\begin{aligned}
& 12+(-19)-(-7) \\
\Rightarrow & 12-19+7 \\
\Rightarrow & -7+7 \\
\Rightarrow & 0
\end{aligned}
$$

$-30-18$

$$
\begin{aligned}
& -48-11 \\
& \Rightarrow-59
\end{aligned}
$$

2.

$$
\begin{aligned}
& -30+19+23-18+7-11+3 \\
\Rightarrow & 19+23+7+3-30-18-11 \\
\Rightarrow & 52-59 \\
\Rightarrow & -7
\end{aligned}
$$

3.

$$
\begin{aligned}
& 86-72+33-48+(-14)-(-26) \\
\Rightarrow & 86+33+26-72-48-14 \\
\Rightarrow & 145-134 \\
\Rightarrow & 11
\end{aligned}
$$

$$
-72-48-14
$$

Thultiplication of integers

$$
\Rightarrow \begin{gathered}
2 \times \underset{(-6)}{1}=\frac{-12}{1} \\
+\underline{-v e}
\end{gathered}
$$

Important Box

$$
\begin{aligned}
& \Theta \times \Theta=\Theta \\
& \Theta \times \Theta=\Theta \\
& \Theta \times \Theta=\Theta \\
& \Theta \times \Theta=\Theta
\end{aligned}
$$

positive (tue) negative (-ve)

(11) $(-7) \times(-9)=63$
(III)

$$
\begin{aligned}
& \underbrace{(-2) \times(-8)}_{1} \times \underbrace{(-3)} \\
\Rightarrow & 16 \times(-3) \\
\Rightarrow & -48
\end{aligned}
$$

$$
\begin{aligned}
(-3) \times 7 & =-(3 \times 7) \\
& =-21
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad(-7) \times(-9) & =+(+\times 9) \\
& =+63
\end{aligned}
$$

$$
\Rightarrow
$$

(iv)

$$
\begin{array}{ll}
(-1) \times(-2) \times(-3) \times(-6) \\
=2 \times 18 & \Rightarrow 2 \times(-3) \times(-6) \\
=36 & \Rightarrow(-6) \times(-6) \\
& \Rightarrow 36
\end{array}
$$

(v) $(-3) \times(-5) \times(-2)=-30$

Class 5

Division of Integers

(ii) $-v e \div+v e=-v e$

(iii) $+v e \div-v e=-v e \quad$ for coy : is $\div(-3)=-(15 \div 3)=-5$
q. $(-30) \div 6=\frac{-30}{6}=-\left(\frac{30}{6}\right)=-5$
ef: $140 \div(-7)=\frac{140}{-7}=-\left(\frac{140}{7}\right)=-20$
Q. Evaluate $-3564 \div 22=-(3567 \div 22)=-\underline{\underline{162}}$

Absolute Value of an Integer
\rightarrow Actual numerical value finteyr regardless of its $\operatorname{sign}(t o r-)$
\rightarrow It is denoted by mod sign 11
\Rightarrow Absolute value of an integer x, is denoted by $|x|$

$$
\text { ag. } \left.\quad \begin{array}{rl}
|6| & =6 \\
\frac{|-7|}{1} & =7
\end{array}\right\}
$$

rood as $\bmod (-7)$ or \bmod of (-7)
mod is abb. for modulus.

$$
\begin{aligned}
& |-13|=13 \\
& \uparrow \\
& \bmod f-13 \\
& |0|=0 \\
& |122|=
\end{aligned}
$$

Q. Find the product of $1296 \times(-74)=-(1296 \times 74)$

$$
=-95904
$$

Q: Simplify:

$$
\begin{aligned}
& 4 \times 3-2+16 \div 8 \\
& =12-2+2 \\
& =12
\end{aligned}
$$

BODMAS
t
of
\downarrow multiplication

$$
\begin{aligned}
& \text { multiplication } \\
& \Rightarrow\left(\frac{1}{2}\right) f(4)=\left(\frac{1}{2}\right) \times\left(\frac{4}{1}\right) \\
&=\frac{4}{2}=\underline{2}
\end{aligned}
$$

Q. Simplify

$$
92-[18+16 \div 4\{26-(14-\overline{7-3})\}]
$$

$$
=92-[18+16 \div 4\{26-(14-4)\}]
$$

Bar or vinculum

$$
=92-[18+16 \div 4\{26-10\}]
$$

$$
=92-[18+16 \div 4 \times 16]
$$

$$
=92-[18+4 \times 16]
$$

$$
=92-[18+64]
$$

$$
=92-82
$$

$$
=10
$$

Class 6

Gain \Rightarrow tve value
Loss \Rightarrow-ve value

$$
\begin{aligned}
& \begin{array}{llll}
-3 & -2 & -1 & 0
\end{array} \\
& 5000 \quad 5 \quad-(15129 \div 144) \\
& 144 \begin{array}{l}
\frac{15129.0}{-144}
\end{array} \quad-(105.06) \\
& -\frac{720}{900} \\
& 864
\end{aligned}
$$

Q. If P means multiplication Q means division, R means addition and S means subtraction, then find the value f :

$$
\begin{aligned}
& 36 P 48 Q 16 R 15 S 23 \\
\Rightarrow & 36 \times 48 \div 16+15-23 \\
\Rightarrow & 100
\end{aligned}
$$

Q. Find the value of : $|-15|+|12|$

$$
\begin{aligned}
& \Rightarrow \quad 15+12 \\
& \Rightarrow \quad 27
\end{aligned}
$$

Q. Arvange $A, B \& C$ in ascending ordr.
$A:-12+(-15)$
B: $-16-(12)$
C: $-14-(-12)$

$$
B<A<C
$$

$$
\begin{aligned}
& A=-12+(-15)=-12-15=-27 \\
& B=-16-12=-28 \\
& C=-14-(-12)=-14+12=-2
\end{aligned}
$$

Q.

$$
\begin{aligned}
& \underbrace{|-5|}_{1}-\underbrace{|-3|}_{1} \\
& \Rightarrow 5-3 \\
& \Rightarrow 2 .
\end{aligned}
$$

Q. P is neither positive nor negative, $Q=-|-q|$ and R is the absolute value $f-13$. Find the value of $P+Q+R$.

Sol.

$$
\begin{aligned}
& P=0 \\
& Q=-|-9|=-9 \\
& R=13
\end{aligned}
$$

$$
\begin{aligned}
P+Q+R & =O+(-9)+13 \\
& =-9+13 \\
& =4
\end{aligned}
$$

Q. The cost of a pen is the largest two dight number (in $\$$). The cost of a text book and a geometry box respectively are the successor and predecciscr of the cost f pen.
Find the sum of the costs f the text back $\&$ geometry box (in δ)

$$
\begin{aligned}
\Rightarrow \quad \text { Text back } & =\$ 100 \\
\text { gromity box } & =\$ 98 \\
\text { total cost } & =\$(100+98) \\
& =\$ 198
\end{aligned}
$$

Q. Simplify: $36-369 \div[-72 \div 24 \times 5+2(17-\overline{7-18})]$

$$
\begin{aligned}
& \Rightarrow 36-369 \div[-72 \div 24 \times 5+2(17-(-11))] \\
& \Rightarrow 36-369 \div[-42 \div 24 \times 5+2(28)] \\
& \Rightarrow 36-369 \div[-3 \times 5+56] \\
& \Rightarrow 36-369 \div[-15+56] \\
& \Rightarrow 36-369 \div[41] \\
& \Rightarrow 36-9 \\
& \Rightarrow 27
\end{aligned}
$$

Q. If A, B, C and D represents X, \div, + and - respectively. then find the value of $9 O B 3 A 5 D 3 \mathrm{Cg}$

$$
\text { Ans } \Rightarrow 156
$$

Class 7

Doubt Clearing Class
$\Delta \rightarrow$ delta
(i)

$$
\begin{aligned}
{ }_{\hat{\tau}}^{2 \Delta 3} & =2-3-(-2) \\
a \quad b & =-1+2 \\
& =1
\end{aligned}
$$

$$
\begin{array}{ll}
+ & \Rightarrow \\
- & \Rightarrow
\end{array}
$$

$$
\begin{aligned}
(-3) \Delta(-4) & =(-3)-(-4)-(-2) \\
\sqrt[\|]{a} \quad \stackrel{b}{b} & =-3+4+2 \\
& =-3+6 \\
& =3
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& a=24-18 \\
& b=(a-2) \\
& a+b=24+22 \\
& =46 \\
& (a+b)=18+16 \\
& = \\
& a=18 \\
& \begin{array}{l|l}
0 \rightarrow & \underline{a+b}
\end{array} \begin{array}{l}
0=20+ \\
\Delta=2
\end{array} \\
& \left.\begin{array}{l}
a=20 \\
b=18
\end{array}\right\} \\
& 0=20+18=38 \\
& \Delta \quad(\underline{a-b}) \\
& =\mid>\underbrace{0+\Delta}=38+2=40
\end{aligned}
$$

$$
\begin{aligned}
& a \Delta b=a-b-(-2)= \\
& 2 \Delta 3= \\
& \uparrow \quad \hat{y} \quad b \\
& a \quad 1,2,3, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1-2}{1}+\underbrace{3-4}_{1}+\underbrace{5-6}+\underbrace{7-8}+\underbrace{9-10}_{-1}+\underbrace{11-12}_{-1}+13-15+16 \\
& \left.\frac{1}{1} \frac{1}{-8}(-1)(-1)(-1)(-1)\right] \text { riethod I }
\end{aligned}
$$

Method II:

$$
\begin{aligned}
& \text { II: } \begin{array}{l}
1-2+3-4+5-6+7-8+9-10+11-12+13-14+15-16 \\
\left(\begin{array}{ll}
1+3+5+7+9+11+13+15
\end{array}\right)+(\underbrace{-2-4-6-8-10-12-14-16)} \\
64+(-72)=\text { EKAdemy }
\end{array}
\end{aligned}
$$

Calcute

Calculate the sum

$$
2+(-2)+2+(-2)+2+(-2)+\cdots
$$

(i) if the no. f terms is 140 (ii) if the no terms is 125 .

$$
\frac{-1}{1+2}
$$

$$
\frac{2+(-2)}{0}+\frac{2+(-2)}{0}+\frac{2+(-2)}{0}+\cdots+\frac{+2+(-2)}{\frac{11}{0}}+\frac{2}{\uparrow}
$$

$$
\Rightarrow \quad 0
$$

