Motion and Forces

Rest and Motion

Zero, +ve D is placement -) divertien

ime: Duration seconds minute, hour, day, weet, years, Other units : Light year =) unit to measure distance. Ly Distance travelled by Speed Hight light in one year. How much dis time (km) light trovelsin © EKADEMY 2×10 m/s. =) [f.w. ttps://ekademy.in

Acceleration"

(ircular motion

https://ekademy.in

ms nit of a relevation

a = change in volocity Velout) \sim Ve w unit of volocity m ン unit of time ms \mathcal{N} M ; 8 M 2

 $\sim\sim\sim$

ketardation

Cacceleration

~ </

N

X

ß

 \mathbf{n}

318

 \mathbf{m}

 \sim

m s⁻²

It velocity is uniform, 7 (In No change in velocity. Menre, no arrebution. =) (irrulan motion is always arrebuated motion. a = <u>change</u> in B time $\alpha = \mathcal{O}_{\pm} - \mathcal{V}_{i}$ a > 0 © EKADEMY https://ekademy.in

Force

- To move a stationary object from one place to another, we need to put some effort. This effort is known as force.
 - For Example, a push, a hit or a pull.

Definition:

An external effort in the form of push or pull that changes or tends to change the state of rest or of motion, or direction, or dimension of the body.

Effects of Force

Force can:

- (initiate motion in a motionless object.
- change (increase or decrease) the velocity of the moving object
- •) alter the direction of a moving object •
- \change the shape and size of an object

Types of Forces: Balanced and Unbalanced Force

- <u>Balanced Forces</u>:- When equal amounts of forces are applied to an object from different directions such that they cancel out each other, such forces are known as balanced forces.
 - Balanced forces do not change the state of rest or motion of an object.
 - Balanced forces may change the shape and size of an object.
- Unbalanced Force When forces applied to an object are of different magnitude (or not in opposite directions to cancel out each other), such forces are unbalanced forces.
 - Unbalanced forces can alter the state of rest or motion of an object.
 - Unbalanced forces can cause acceleration in an object.
 - Unbalanced forces can change the shape and size of an object.

Types of Forces: Contact and Contactless force

contact is required Friction mv.

Physical contact is not required Gravitational force magnetic force force between charge

- It is a force extended when two surfaces are in contact with each other.
- It always acts in a direction opposite to the direction of motion of the object.

Laws of Motion

Newton's Laws of Motion

First Law of Motion (Law of Inertia)

- An object remains in a state of rest or of uniform motion in a straight line unless compelled to change that state by an applied force.
- In other words, all objects resist a change in their state of motion or rest.
- The tendency of an object to stay at rest or to keep moving with same velocity is called inertia.

First Law of Motion (Law of Inertia)

- An object remains in a state of rest or of uniform motion in a straight line unless compelled to change that state by an applied force.
- In other words, all objects resist a change in their state of motion or rest.
- The tendency of an object to stay at rest or to keep moving with same velocity is called inertia.
- First Law gives qualitative definition of force.

https://ekademy.in

- A person standing in a bus fall backward whe suddenly.
- A person standing in a moving bus falls forwa breaks suddenly.

 Before hanging wet cloths over laundry ling given to the clothes to get them dried quic

• When pile of coins on the carrom board is hit by a striker, coin only at the bottom moves away leaving rest of the pile of coin at the same place

• Falling of fruits and leaves

• Dusting a carpet

Running of an athlete before taking a long jugar

• Continued swirling of milk after the stirring is stopped.

Inertia and Mass

- Inertia is the natural tendency of an object to resist change in its state of rest or of motion.
- The inertia of an object is dependent upon its mass.
- Lighter objects have less inertia, that is, they can easily change their state of rest or motion.
- Heavier objects have large inertia and therefore they show more resistance.
- Hence 'Mass' is called a measure of the inertia of an object.

F=ma Quantitative explanation to calculate the amont of force (F=ma)

