

Some basic concepts of chemistry

Chapter 1

Introduction to Chemistry

these changes

Chapter 1: Some Basic Concepts of Chemistry

Introduction to Chemistry

History of Chemistry

Importance of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

History of Chemistry

The name Chemistry is derived from the word Al-Chemy

Philosopher's stone (Paras)

'Elixir of life' which would grant immortality

Modern chemistry developed in Europe as a result of the above two quests of the Arabs

History of Indian Chemistry

Indians had their own alchemical traditions

That included much knowledge of chemical processes and techniques

Chemistry –

- Rasayan Shastra
- Rastantra
- Ras Kriya
- Rasvidya

ekademy.in

Metallurgical Knowledge Chalcolithic cultures

Ancient Indian Chemistry Included

History of Indian Chemistry

Knowledge of Dyes Atharvaveda

Ancient Medicines Charaka Samhita

Cosmetic Products Varähmihir's Brihat Samhita

Chapter 1: Some Basic Concepts of Chemistry

Importance of Chemistry

Life-saving Medicines Eg. cis-platin & taxol Cancer treatment AZT (Azidothymidine) helping AIDS patients

Agriculture Making Fertilisers

Chapter 1: Some Basic Concepts of Chemistry

Nature of Matter

1.]

Chapter 1: Some Basic Concepts of Chemistry

1.1 Nature of Matter

Learning Objectives

Matter and its Physical States

Classification of Matter

Chapter 1: Some Basic Concepts of Chemistry

Matter and Its Physical States

1.1.1

Chapter 1: Some Basic Concepts of Chemistry

Matter

A matter is defined as anything that occupies space, possesses mass and the presence of which can be felt by any one or more of our senses

Air in Football

Weight

Moving Hair in Wind

Chapter 1: Some Basic Concepts of Chemistry

Matter

Chapter 1: Some Basic Concepts of Chemistry

Physical states of Matter

• Definite shape

• No definite shape

No definite shape

Properties of Solid, Liquid and Gas

Properties	Solid	Liquid	Gas
Volume	Definite	Definite	Indefinite
Shape	Definite	Indefinite	Indefinite
Intermolecular force	Very high	Moderate	Negligible
Intermolecular space	Very small	Slightly greater	Very large
Compressibility	No	No	Very high
Expansion on heating	Very little	Very little	Very high
Rigidity	Highly rigid	Not rigid	Not rigid
Fluidity	Can't flow	Can flow	Can flow

(Sm) ekademy.in

Chapter 1: Some Basic Concepts of Chemistry

Classification of Matter

1.1.2

Chapter 1: Some Basic Concepts of Chemistry

Classification of Matter

Chapter 1: Some Basic Concepts of Chemistry

ekademy.in

Chapter 1: Some Basic Concepts of Chemistry

Pure substances

• Made up of single kind of particles

Elements

• Consist of only one type of particles

Compounds

- Combination of two or more different atoms in a definite ratio.
- Constituents can be separated by chemical methods.

Molecules

Abhinav K Singh (AKS)

Chapter 1: Some Basic Concepts of Chemistry

Mixture

Contains particles of two or more pure substances which may be present in any ratio

Can be separated by filtration, distillation, evaporation etc.

Examples - sugar solution in water, air, tea, dal etc.

Chapter 1: Some Basic Concepts of Chemistry

Homogeneous Mixture

- Components are completely mixed
- Particles of components are uniformly distributed

Example - Lemonade

ekademy.in

Heterogeneous Mixture

- Components do not mix completely
- Particles of components are not uniformly distributed

Example - Daal

Cook

Chapter 1: Some Basic Concepts of Chemistry

Problems + Solutions

1.1

Chapter 1: Some Basic Concepts of Chemistry

Q. Categorise the following as homogeneous and heterogeneous mixtures.(i) sugar-water solution, (ii) air, (iii) mixture of pulses

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Categorise the following as homogeneous and heterogeneous mixtures.(i) sugar-water solution, (ii) air, (iii) mixture of pulses

Concep Test

Ready for Challenge

Chapter 1: Some Basic Concepts of Chemistry

Q. Categorise the following as pure substance and mixtures.
(i) NH₄Cl, (ii) pure ghee, (iii) pure honey, (iv) water, (v) pure milk

Pause the video

Time duration: 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Categorise the following as pure substance and mixtures.
(i) NH₄Cl, (ii) pure ghee, (iii) pure honey, (iv) water, (v) pure milk

Sol.

Made up of only NH₄Cl particles-Pure substance Fat, moisture and vitamin-Mixture

Carbohydrate, sugar, water-Mixture

Made up of only H₂0 particles-Pure substance

ekademy.in

Chapter 1: Some Basic Concepts of Chemistry

Calcium, carbohydrate, fat, sugar, water-Mixture

Summary

History of Chemistry

Importance of Chemistry

Matter and its physical states

Properties of solid, liquid and gas

Classification of matter

Pure substance – elements and compounds

Mixture – homogeneous and heterogeneous

Add two/three problems here

Chapter 1: Some Basic Concepts of Chemistry

Properties of Matter and Their Measurement

1.2

Chapter 1: Some Basic Concepts of Chemistry

1.2 Properties of Matter and their Measurement

Learning Objectives

Properties of Matter and measurement of Physical Properties

Mass, Volume, Density and Temperature

Scientific Notation and Uncertainty in Measurement

Chapter 1: Some Basic Concepts of Chemistry

Properties of Matter and measurement of Physical Properties

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

Physical properties

Can be measured without changing the composition of the substance

Colour of Substance

Melting Point

Boiling point

Measurement does not require occurrence of a chemical change

Chemical properties

During measurement, there is a change in composition of the substance

Acid-base nature

Chemical reactivity

Chemical change will occur during measurement

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

Representation of Physical Properties

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

Seven Base Physical Quantities and their Units

Base Physical Quantity	Symbol of Quantity	Name of SI Unit	Symbol of SI Unit
Length	Ι	metre	m
Mass	m	kilogram	kg
Time	t	second	S
Electric current	1	ampere	А
Thermodynamic temp.	Т	kelvin	K
Amount of substance	n	mole	mol
Luminous intensity	I_{v}	candela	cd

ekademy.in

Chapter 1: Some Basic Concepts of Chemistry

Mass, Volume, Density and Temperature

1.2.2

Chapter 1: Some Basic Concepts of Chemistry

Determined by analytical balance

Chapter 1: Some Basic Concepts of Chemistry

Volume

of Chemistry

Abhinav K Singh (AKS)

flask

Density

Chemist often expresses density in g cm⁻³

Chapter 1: Some Basic Concepts of Chemistry

ekademy.in

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

Scientific Notation and Uncertainty in Measurement

Chapter 1: Some Basic Concepts of Chemistry

Scientific Notation

To simplify the calculation, any number can be represented in terms of exponential notation

232.508 can be written as-

2.32508 ×10²

0.00016 can be written as-

1.6 × 10⁻⁴

Chapter 1: Some Basic Concepts of Chemistry

Q. Using scientific notation, solve the following

i. $(6.65 \times 10^4) + (8.95 \times 10^3)$ ii. $(2.5 \times 10^{-2}) - (4.8 \times 10^{-3})$

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Using scientific notation, solve the following

i. (6.65 × 10⁴) + (8.95 × 10³) ii. (2.5 × 10⁻²) – (4.8 × 10⁻³)

Sol.

(6.65 × 10⁴) + (8.95 × 10³)

= (6.65 × 10⁴) + (0.895 × 10⁴)

= (6.65 + 0.895) × 10⁴

= 7.545 × 10⁴

 $(2.5 \times 10^{-2}) - (4.8 \times 10^{-3})$

 $= (2.5 \times 10^{-2}) - (0.48 \times 10^{-2})$

= (2.5 – 0.48) × 10⁻²

 $= 2.02 \times 10^{-2}$

Uncertainty in Measurement

Experimental measurement or result has some amount of uncertainty

Uncertainty in experimental values is indicated by significant figures

Chapter 1: Some Basic Concepts of Chemistry

Significant figures

Chapter 1: Some Basic Concepts of Chemistry

Rules for determining Significant figures

Rules for determining Significant figures

4- Zeros at the end or right of a number are significant, provided they are on the right side of the decimal point 0.200

5- Exact numbers have infinite significant figures

2 balls Infinite

30 eggs

Infinite

3

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

Precision and Accuracy

Chapter 1: Some Basic Concepts of Chemistry

Problems + Solutions

11C01.2

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the significant figure for the following addition-12.11 + 18.0 + 1.012

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the significant figure for the following addition-12.11 + 18.0 + 1.012

Result cannot have more digits to the right of the decimal point than either of the original numbers

Here, 18.0 has only one digit after decimal

Result should be reported only up to one digit after decimal

31.122

Q. A jug contains 2 L of milk. Calculate the volume of the milk in m_3

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. A jug contains 2 L of milk. Calculate the volume of the milk in m³

Sol.

We know, $1 L = 10^{-3} m^3$, Thus

$$\frac{1 \text{ L}}{10^{-3} \text{ m}^3} = 1 = \frac{10^{-3} \text{ m}^3}{1 \text{ L}}$$

Called Unit Factors

Desired value = Given value \times Unit factor

Dimensional Analysis

The numerator should have that part which is required in the desired result

$$2 L = 2 L \times \frac{10^{-3} m^3}{1 L}$$

$$= 2 \times 10^{-3} \text{ m}^3$$

Chapter 1: Some Basic Concepts of Chemistry

Summary

Physical properties

Chemical properties

Measurement of physical properties

SI units

Mass, volume, density and temperature

Uncertainty in measurement – significant figures, precision and accuracy

NCERT Exercise Questions: 1.15, 1.16, 1.18, 1.19, 1.20, 1.22, 1.27, 1.31

Chapter 1: Some Basic Concepts of Chemistry

Laws of Chemical Combinations, Atomic and Molecular Masses

1.3

Chapter 1: Some Basic Concepts of Chemistry

1.3 Laws of Chemical Combinations, Atomic and Molecular Masses

Learning Objectives

Laws of Chemical Combinations

Dalton's Atomic Theory, Atomic and Molecular Masses

Chapter 1: Some Basic Concepts of Chemistry

Laws of Chemical Combinations

Chapter 1: Some Basic Concepts of Chemistry

Laws of Chemical Combinations

Elements combine together chemically to form compounds

These chemical combinations are based on some laws

Chapter 1: Some Basic Concepts of Chemistry

Laws of Chemical Combinations

Law of Conservation of Mass

Law of Definite Proportions

Law of Multiple Proportions

Gay Lussac's Law of Gaseous Volumes

Avogadro's Law

Chapter 1: Some Basic Concepts of Chemistry

Law of Conservation of Mass

Antoine Lavoisier

Nor be destroyed

Neither be created

Ma

<u>(er</u>

Chapter 1: Some Basic Concepts of Chemistry

Law of Definite Proportions or Law of Definite Composition

Irrespective of the source, a compound always contains same elements combined together in the same proportion by mass

Cupric Carbonate

Natural

Synthetic

Joseph Proust

Law of Multiple Proportions

If two elements combine to form more than one compounds, masses of one element that combine with fixed mass of the other element, are in ratio of small whole numbers

Dalton

Reaction between Hydrogen and Oxygen

Hydrogen 2 g + Oxygen 16 g

Water 18 g

Ratio b/w masses of Oxygen

16:32 = 1:2

Hydrogen 2 g + Oxygen 32 g

Hydrogen Peroxide 34 g

Gay Lussac's Law of Gaseous Volumes

At constant T and P, when gases combine or are produced in a chemical reaction, they do so in a simple ratio by volume

Reaction between Hydrogen and Oxygen

Chapter 1: Some Basic Concepts of Chemistry

Avogadro's Law

Equal volumes of all gases at same T and P should contain equal number of molecules

Number of Molecules

V∝n

Irrespective of mass of gas molecule Heavier than Hydrogen

ekademy.in

Chapter 1: Some Basic Concepts of Chemistry

Avogadro's Law

Chapter 1: Some Basic Concepts of Chemistry

Dalton's Atomic Theory Atomic & Molecular Masses

Chapter 1: Some Basic Concepts of Chemistry

Dalton's Atomic Theory

1 - Matter consists of indivisible atoms

- 2 All atoms of a given element have identical properties, including identical mass. Atoms of different elements differ in mass
- 3 Compounds are formed when atoms of different elements combine in a fixed ratio
- 4 Chemical reactions involve the reorganisation of atoms. These are neither created nor destroyed in a chemical reaction

Dalton's Atomic Theory

Explain the laws of chemical combination

Could not explain the laws of gaseous volumes

Could not provide the reason for combining of atoms

Chapter 1: Some Basic Concepts of Chemistry

Atomic Mass

The mass of an atom

An atom is very small

Mass of an atom is also extremely small

How to measure ?

Chapter 1: Some Basic Concepts of Chemistry

Determination of Atomic Mass

In 19th century, scientists could determine the mass of one atom relative to another by experimental means

Lightest atom

Arbitrarily assigned a mass of 1 (without any units)

Other elements were assigned masses relative to it

But was not successful

Determination of Atomic Mass

Present system of atomic masses is based on

A mass of exactly 12 atomic mass unit (amu)

Masses of all other atoms are given relative to this standard

amu is one-twelfth of the mass of one carbon-12 atom

$$1 \text{ amu} = \frac{1}{12} \times \text{Mass of C} - 12 \text{ atom}$$

 $1 \text{ amu} = 1.66056 \times 10^{-24} \text{ g}$

amu = u (unified mass)

Chapter 1: Some Basic Concepts of Chemistry

Problems + Solutions

1.3

Chapter 1: Some Basic Concepts of Chemistry

Q. Atomic mass of hydrogen is 1.6736×10^{-24} g. Calculate atomic mass of hydrogen in amu.

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Atomic mass of hydrogen is 1.6736×10^{-24} g. Calculate atomic mass of hydrogen in amu.

```
Sol. 1 amu = 1.66056 \times 10^{-24} g
```

```
Mass of an atom of hydrogen = 1.6736 \times 10^{-24} g
```

In amu, mass of H atom =

 $= \frac{1.6736 \times 10^{-24}}{1.66056 \times 10^{-24}}$

= 1.0078

= 1.008 amu or u

Chapter 1: Some Basic Concepts of Chemistry

Average Atomic Mass

Chapter 1: Some Basic Concepts of Chemistry

Problems + Solutions

1.3

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate average atomic mass of carbon using table given below.

Isotope	Relative Abundance (%)	Atomic Mass (amu)
C - 12	98.892	12
C - 13	1.108	13.00335
C - 14	2 ×10 ⁻¹⁰	14.00317

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Sol.	Isotope	Relative Abundance (%)	Atomic Mass (amu)
	C - 12	98.892	12
	C - 13	1.108	13.00335
	C - 14	2 ×10 ⁻¹⁰	14.00317

Avg. A. M =
$$\frac{\% C - 12}{100} \times A. M C - 12 + \frac{\% C - 13}{100} \times A. M C - 13 + \frac{\% C - 14}{100} \times A. M C - 14$$

 $= 0.98892 \times 12 u + 0.01108 \times 13.00335 u + 2 \times 10^{-12} \times 14.00317 u$

Avg. A. **M** = 12.001 u

Molecular Mass

It is the sum of atomic masses of all the elements present in a molecule

Molecular mass of methane, CH₄

 $1 \times a.m of C + 4 \times a.m of H$

(12.011 u) + 4 (1.008 u) = 16.043 u

Molecular mass of water (H_20)

 $2 \times a.m of H + 1 \times a.m of O$

2 (1.008 u) + 16.00 u = 18.02 u

Concept Test

Ready for Challenge

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the molecular mass of glucose ($C_6H_{12}O_6$) molecule.

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the molecular mass of glucose ($C_6H_{12}O_6$) molecule.

Sol.

Molecular mass of glucose (C₆H₁₂O₆) -

 $6 \times a.m of C + 12 \times a.m of H + 6 \times a.m of O$

= 6(12.011 u) + 12(1.008 u) + 6(16.00 u)

- = (72.066 u) + (12.096 u) + (96.00 u)
- = 180.162 u

Concept Test

Ready for Challenge

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the molecular mass of crystalline oxalic acid.

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the molecular mass of crystalline oxalic acid.

Sol.

Molecular mass of $C_2H_2O_4 \cdot 2H_2O$ -

= 2(12.011 u) + 2(1.008 u) + 4(16.00 u) + 4(1.008 u) + 2(16.00 u)

= (24.022 u) + (2.016) + (64.00 u) + (4.032 u) + (32.00 u)

= 126.07 u

Chapter 1: Some Basic Concepts of Chemistry

Formula Mass

Some substances do not contain discrete molecules as their constituent units

Positive and negative entities are arranged in a 3-D structure

I Na⁺ ion is surrounded by 6 Cl⁻ ion and vice versa

Formula is used to calculate the formula mass instead of molecular mass

Atomic mass of Na + Atomic mass of Cl

= 23.0 u + 35.5 u = 58.5 u

Na⁺

Chapter 1: Some Basic Concepts of Chemistry

1.3 Reference questions

NCERT Exercise Questions: 1.21, 1.32

Chapter 1: Some Basic Concepts of Chemistry

Mole Concept and Percentage Composition

1.4

Chapter 1: Some Basic Concepts of Chemistry

1.4 Mole Concept and Percentage Composition

Learning Objectives

Mole concept, Avogadro's number & Molar Mass

Percentage Composition, Empirical & Molecular Formula

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

Why Mole?

- Atoms and molecules are extremely small in size.
- Their numbers in even a small amount of any substance is really very large.

To deal with such large numbers we invented **mole**.

Mole is just a number, as :

Dozen = 12

Century = 100

Mole = 6. 022×10^{23}

Chapter 1: Some Basic Concepts of Chemistry

What is Mole??

The amount of a substance that contains as many particles as there are atoms in exactly 12g of the ¹²C isotope.

Mass of 1 Carbon atom

 $= 1.992648 \times 10^{-23} g$

Number of Carbon atoms in 12g Carbon = $\frac{12g}{1.992648 \times 10^{-23}g}$

$$= 6.022 \times 10^{23}$$

Entities in a Mole:

Chapter 1: Some Basic Concepts of Chemistry

Problem + Solution

1.4.1

Chapter 1: Some Basic Concepts of Chemistry

Q. In three moles of ethane (C₂H₆), calculate the following:
(i) Number of moles of carbon atoms.
(ii) Number of moles of hydrogen atoms.
(iii) Number of molecules of ethane.

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Sol.

- (i) : 1 mol of ethane contains
 - \therefore 3 mol of ethane will contain

 $= 2 \mod \text{of } C \mod C$

- $= \frac{3\text{mol}}{1\text{mol}} \times 2 \text{ mol} = 6 \text{ mol of C atom}$
- (ii) : 1 mol of ethane contains = 6 mol of H atom
 - ∴ 3 mol of ethane will contain
- (iii) : 1 mol of ethane contains
 - ∴ 3 mol of ethane will contain

- $= \frac{6 \text{mol}}{1 \text{mol}} \times 3 \text{ mol} = 18 \text{ mol of H atom}$
 - = 6.022×10^{23} molecules of C₂H₆
 - $= \frac{3\text{mol}}{1\text{mol}} \times 6.022 \times 10^{23} \text{ molecules of } C_2 H_6$
 - = 18.066×10^{23} molecules of C₂H₆

Molar Mass

The mass of one mole of a substance in grams is called its molar mass Example :

Molar mass of water

 $= 18.02 \text{ g mol}^{-1}$

Molar mass of sodium chloride $= 58.5 \text{ g mol}^{-1}$

Chapter 1: Some Basic Concepts of Chemistry

Concept Test

Ready for Challenge

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

- **Q.** Calculate the molar mass of the following : (i) H_2O (ii) CO_2 (iii) CH_4
- **Sol.** Molar mass of

 $H = 1 \text{gmol}^{-1}$ $C = 12 \text{gmol}^{-1}$ $O = 16 \text{gmol}^{-1}$

Therefore,

- (i) Molar mass of $H_2 0 = 2 \times 1 \text{gmol}^{-1} + 1 \times 16 \text{gmol}^{-1} = 18 \text{gmol}^{-1}$
- (ii) Molar mass of $CO_2 = 1 \times 12 \text{gmol}^{-1} + 2 \times 16 \text{gmol}^{-1} = 44 \text{gmol}^{-1}$
- (iii) Molar mass of $CH_4 = 1 \times 12 \text{gmol}^{-1} + 4 \times 1 \text{gmol}^{-1} = 16 \text{gmol}^{-1}$

Concept Test

Ready for Challenge

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate number of oxygen atoms in 4.4g of CO_2 .

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate number of oxygen atoms in 4.4g of CO_2 .

1.4.2

Percentage Composition, Empirical & Molecular Formula

Chapter 1: Some Basic Concepts of Chemistry

Percentage Composition

Η

% composition of elements??

Chapter 1: Socus045H20s of Chemistry

 \bigcirc

S

Cu

Percentage Composition

Mass of that element in the compound $\times 100\%$ Mass % of an element = Molar mass of the compound Therefore, $=\frac{63.5}{249.5} \times 100\% = 25.45\%$ Mass % of Cu in CuSO₄. 5H₂O $=\frac{32}{249.5} \times 100\% = 12.82\%$ Mass % of S in $CuSO_4$. 5H₂O $=\frac{144}{249.5} \times 100\% = 57.72\%$ Mass % of 0 in $CuSO_4$. 5H₂0 $=\frac{10}{249.5} \times 100\% = 04.01\%$ Mass % of H in $CuSO_4$. 5H₂O

Concept Test

Ready for Challenge

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the mass percentage of each element in ammonia.

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the mass percentage of each element in ammonia.

Sol.

Molar mass of Ammonia (NH_3) = 14g + 3 × 1g = 17g

Chapter 1: Some Basic Concepts of Chemistry

Empirical Formula

It represents the simplest whole number ratio of various atoms present in a compound.

Molecular formula

It shows the exact number of different types of atoms present in a molecule of a compound.

Molecular Formula = n × Empirical formula

Where,

= Molar mass Empirical formula mass

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

Q. A compound contains 4.07% hydrogen, 24.27% carbon and 71.65% chlorine. Its molar mass is 98.96 g. What are its empirical and molecular formulas?

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Sol.

Step 1. Convert mass% into grams assuming 100g sample Therefore,

H = 4.07g C = 24.27g Cl = 71.65g Step 2. Convert mass into moles of each element Therefore,

$$n_{\rm H} = \frac{4.07g}{1.008g} = 4.04 \text{ mol}$$

$$n_{\rm C} = \frac{24.27g}{12.01g} = 2.021 \text{ mol}$$

$$n_{\rm Cl} = \frac{71.65g}{35.453g} = 2.021 \text{ mol}$$

Chapter 1: Some Basic Concepts of Chemistry

Step 3. Calculate simple whole-number molar ratios & determine empiricalformula :H4.042.0212.021

$$=\frac{4.04}{2.021} = \frac{2.021}{2.021} = \frac{2.021}{2.021}$$

$$= 2 = 1 = 1$$

Thus the empirical formula is CH₂Cl

Step 4. Writing the molecular formula

Empirical formula mass = 12.01 + (2 × 1.008) + 35.453 = 49.48g

$$\therefore$$
 n = $\frac{\text{Molar mass}}{\text{Empirical formula mass}} = \frac{98.96}{49.48} = 2$

: Molecular Formula = $n \times (Empirical Formula) = 2 \times (CH_2Cl) = C_2H_4Cl_2$

Tabular Method for calculation of Empirical formula

Elements in Compound	% Composition	Molar mass (g)	%Composition/ molar mass	Molar ratio	Simple whole number ratio
Н	4.07	1.008	4.04	$\frac{4.04}{2.021} = 2$	2
С	24.27	12.01	2.021	$\frac{2.0214}{2.021} = 1$	1
Cl	71.65	35.453	2.021	$\frac{2.021}{2.021} = 1$	1

Thus the empirical formula is CH₂Cl

Summary

Mole and Avogadro's Number

Molar mass

Percentage Composition

Empirical Formula

Molecular Formula Molecular Formula = n × Empirical formula

 $n = \frac{Molar mass}{Empirical formula mass}$

Chapter 1: Some Basic Concepts of Chemistry

NCERT Exercise questions : 1.1, 1.2 , 1.3, 1.8, 1.10, 1.28, 1.30, 1.33, 1.34

Chapter 1: Some Basic Concepts of Chemistry

Balancing, Stoichiometry & Limiting Reagent of a Chemical Equation

1.5

Chapter 1: Some Basic Concepts of Chemistry

1.5 Balancing, Stoichiometry & limiting reagent of a Chemical Equation

Learning Objectives

- Balancing of Chemical equations
- Stoichiometry & Stoichiometric calculations
- Limiting Reagent

Chapter 1: Some Basic Concepts of Chemistry

Balancing of Chemical Equations

1.5.1

Chapter 1: Some Basic Concepts of Chemistry

Balancing of a chemical Equation

What is a Balanced chemical Reaction/Equation?

A balanced chemical equation has the same number of atoms of each element on both sides of the equation.

Why is balancing necessary?

The chemical equation needs to be balanced so that it follows the law of conservation of mass.

How to Balance a Chemical Equation

The best way to balance a chemical equation is by hit & trail method. Example : Balance $C_2H_6 + O_2 \rightarrow CO_2 + H_2O$ Step 1. Start balancing any element (prefer main element) by adjusting Stoichiometry coefficients. Carbon is balanced $C_2H_6 + O_2 \rightarrow 2CO_2 + H_2O$ Step 2. Balance other element without disturbing the balancing of previously balanced element. Hydrogen is balanced $C_2H_6 + O_2 \rightarrow 2CO_2 + 3H_2O$ Step 3. Repeat the step 2 until all elements are balanced. Oxygen is balanced $C_2H_6 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$

Chapter 1: Some Basic Concepts of Chemistry

01.5.2

Stoichiometry & Stoichiometric Calculations

Chapter 1: Some Basic Concepts of Chemistry

Stoichiometry

Quantitative analysis of a balanced chemical reaction

Chapter 1: Some Basic Concepts of Chemistry

Problems + Solutions

1.5

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the amount of water (g) produced by the combustion of 48 g of methane.

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the amount of water (g) produced by the combustion of 48 g of methane.

Sol.

Balanced chemical reaction for the combustion of methane

 $\begin{array}{rcl} CH_{4(g)} & + & 2O_{2(g)} & \longrightarrow & CO_{2(g)} & + & 2H_2O_{(g)} \end{array}$ From the above reaction, 16g of methane produces = 36g of water

Therefore,

48g of methane will produce

- $\frac{48g}{16g} \times 36g$ of water
- = 108g of water

Chapter 1: Some Basic Concepts of Chemistry

Concept Test

Ready for Challenge

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the amount of carbon dioxide that could be produced when 2 moles of carbon are burnt in air.

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the amount of carbon dioxide that could be produced when 2 moles of carbon are burnt in air.

= $88 \text{ g of } \text{CO}_2$

Chapter 1: Some Basic Concepts of Chemistry

1.5.3 Limiting Reagent

Chapter 1: Some Basic Concepts of Chemistry

Limiting Reagent

The reactant which gets consumed first and limits the amount of product formed

- Method to solve problems based on the limiting Reagent :
- Step 1. Write the balanced chemical equation
- Step 2. Calculate moles of each compound

- Step 3. Calculate ratio of number of moles to the stoichiometry coefficient.
- " Compound with minimum ratio will be the limiting reagent."

Step 4. Do all calculations based on the availability of the limiting reagent.

11C01.5.3

Problems + Solutions

Chapter 1: Some Basic Concepts of Chemistry

Q. 50.0 kg of $N_{2(g)}$ and 10.0 kg of $H_{2(g)}$ are mixed to produce $NH_{3(g)}$. Calculate the amount of $NH_{3(g)}$ formed. Identify the limiting reagent in the production of $NH_{3(g)}$ in this situation.

Chapter 1: Some Basic Concepts of Chemistry

Sol. Step 1. Balanced Reaction $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$

Step 2. Number of moles of each compounds :

Moles of $N_2 = \frac{50 \text{kg}}{28.0 \text{g}} = 17.86 \times 10^2 \text{ mol}$

Moles of $H_2 = \frac{10 \text{kg}}{2.016 \text{g}} = 4.96 \times 10^3 \text{ mol}$

Step 3. Number of moles V/s Stoichiometry Coefficient :

 $\begin{array}{ccc}
N_2 & H_2 \\
\underline{17.86 \times 10^2} & \underline{4.96 \times 10^3} \\
1 & 3
\end{array}$

= 1.786×10^3 > Hence H₂ is the limiting reagent.

ekademy.in

Chapter 1: Some Basic Concepts of Chemistry

Abhinav K Singh (AKS)

 $= 1.653 \times 10^{3}$

Step 4. Calculations based on availability of limiting reagent(H₂):

ekademy.in

Chapter 1: Some Basic Concepts of Chemistry

Concept Test

Ready for Challenge

Chapter 1: Some Basic Concepts of Chemistry

Q. Chlorine is prepared in the laboratory by treating manganese dioxide (MnO_2) with aqueous hydrochloric acid according to the reaction

 $4\text{HCl}_{(aq)} + \text{MnO}_{2(s)} \rightarrow 2\text{H}_2\text{O}_{(l)} + \text{MnCl}_{2(aq)} + \text{Cl}_{2(g)}$

How many grams of chlorine is produced if 10.95g of HCl reacts with 8.7 g of manganese dioxide?

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Sol. Step 1. Balanced Reaction

 $4\text{HCl}_{(aq)} + \text{MnO}_{2(s)} \rightarrow 2\text{H}_2\text{O}_{(l)} + \text{MnCl}_{2(aq)} + \text{Cl}_{2(g)}$

Step 2. Number of moles of each compounds :

Moles of HCl $=\frac{10.95g}{36.5g} = 0.3 \text{ mol}$ Moles of MnO₂ $=\frac{8.7g}{87g} = 0.1 \text{ mol}$ Step 3. Number of moles V/s Stoichiometry Coefficient : HCl MnO₂

Hence HCl is the limiting reagent.

Chapter 1: Some Basic Concepts of Chemistry

Step 4. Calculations based on availability of limiting reagent(HCl):

Since,

4 mol of HCl produces

= $1 \mod \text{of } \text{Cl}_2$

Therefore,

0.3 mol of HCl will produce

 $= \frac{0.3 \text{ mol}}{4 \text{ mol}} \times 1 \text{ mol of } \text{Cl}_2$

= $0.075 \text{ mol of } \text{Cl}_2$

Therefore,

Mass of Cl_2 obtained = Number of moles of $Cl_2 \times molar$ mass of Cl_2

 $= 0.075 \text{mol} \times 71 \text{ gmol}^{-1}$

= 5.325g

Chapter 1: Some Basic Concepts of Chemistry

Stoichiometry & Stoichiometric Observations

Balancing of Chemical Reactions

Method to Determine Limiting Reagent

Chapter 1: Some Basic Concepts of Chemistry

NCERT Exercise questions : 1.4, 1.7, 1.23, 1.24, 1.36.

Chapter 1: Some Basic Concepts of Chemistry

Reactions in Solution

1.6

Chapter 1: Some Basic Concepts of Chemistry

1.6 Reactions in Solution

Learning Objectives

Introduction to Solutions

Mass % & Mole Fraction

Molarity

Molality

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

Introduction to the world of solutions

A solution is a **homogeneous mixture** of two or more substances

A solution may exist in any phase

Cold drinks

Air

Solute is usually present in a smaller amount than the Solvent

Chapter 1: Some Basic Concepts of Chemistry

Examples:

→ drinking coffee ground coffee water + (solute) (solvent) (solution) salt salty water water + (solvent) (solute) (solution) copper sulfate copper sulfate solution water + \rightarrow (solute) (solvent) (solution)

1.6.2 Mass % & Mole Fraction

Chapter 1: Some Basic Concepts of Chemistry

Concentration

The quantity of solute present in a given quantity of solution

Concentration can be measured in :

- Mass %
- Mole Fraction
- Molarity
- Molality

Mass Percent

Mass of solute Mass percent = $\frac{Mass of solution}{Mass of solution} \times 100\%$

A solution is prepared by adding 2 g of substance A to 18 g of water. Q. Calculate the mass per cent of the solute.

Sol.

Mass of A

Mass of solution = mass of A + Mass of water

Mass % of A =
$$\frac{\text{Mass of A}}{\text{Mass of solution}} \times 100\% = \frac{2\text{g}}{20\text{g}} \times 100\% = 10\%$$

Chapter 1: Some Basic Concepts of Chemistry

Mole Fraction

- It is the ratio of the number of moles of a particular component to the total number of moles of the solution
- It is represented by " χ "

Mole Fraction of component $(\chi) =$

Number of moles of component

Total number of moles of all the components

Chapter 1: Some Basic Concepts of Chemistry

Mole Fraction

Note : sum of mole fractions of all the compounds present in the solution is unity

$$\chi_A + \chi_B = 1$$

Problems + Solutions

1.6

Chapter 1: Some Basic Concepts of Chemistry

Q. If 4 moles of alcohol and 6 moles of water are mixed then calculate mole fraction of each component.

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. If 4 moles of alcohol and 6 moles of water are mixed then calculate mole fraction of each component.

Sol.

Moles of alcohol (n_a) = 4 mol , Moles of water (n_w) = 6 mol

Mole Fraction of component $(\chi) =$

Number of moles of component

Total number of moles of all the components

$$\chi_a = \frac{n_a}{n_a + n_w} = \frac{4}{4 + 6} = 0.4$$
$$\chi_w = \frac{n_w}{n_a + n_w} = \frac{6}{4 + 6} = 0.6$$

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

Molarity

The number of moles of solute present per litre of solution. It is represented by "M"

> Molarity (M) = Number of moles of solute Volume of solution in litres

Units of molarity = $Mol L^{-1}$

Chapter 1: Some Basic Concepts of Chemistry

For dilution of solutions

Chapter 1: Some Basic Concepts of Chemistry

Problems + Solutions

1.6.3

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the molarity of aqueous NaOH solution prepared by dissolving 4 g of NaOH in enough water to form 250 mL of the solution.

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the molarity of aqueous NaOH solution prepared by dissolving 4 g of NaOH in enough water to form 250 mL of the solution.

Sol.
Moles of NaOH =
$$\frac{\text{Given mass of NaOH}}{\text{Molar mass of NaOH}} = \frac{4 \text{ g}}{40 \text{ g mol}^{-1}} = 0.1 \text{ mol}$$

Volume of Solution = 250 ml = 0.25L
Molarity (M) = $\frac{\text{Number of moles of solute}}{\text{Volume of solution in litres}}$
M = $\frac{0.1 \text{mol}}{0.25 \text{L}} = 0.4 \text{ mol L}^{-1}$

Chapter 1: Some Basic Concepts of Chemistry

Concept Test

Ready for Challenge

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the mass of sodium acetate (CH_3COONa) required to make 500 mL of 0.375 molar aqueous solution. Molar mass of CH_3COONa is $82gmol^{-1}$.

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the mass of sodium acetate (CH_3COONa) required to make 500 mL of 0.375 molar aqueous solution. Molar mass of CH_3COONa is $82gmol^{-1}$.

 $= 0.1875 \times 82 \text{gmol}^{-1} = 15.375 \text{ g}$

Chapter 1: Some Basic Concepts of Chemistry

Chapter 1: Some Basic Concepts of Chemistry

Molality

- It is defined as the number of moles of solute present per kg of solvent
- It is denoted by "m"
- Units of Molality = $mol kg^{-1}$

Molality (m) = $\frac{\text{Number of moles of solute}}{\text{Mass of solvent in Kg}}$

1.6.4

Problems + Solutions

Chapter 1: Some Basic Concepts of Chemistry
Q. Calculate the molality of 2.5 g of ethanoic acid (CH₃COOH) in 50 g of benzene. Molar mass of ethanoic acid = 60 g mol⁻¹

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. Calculate the molality of 2.5 g of ethanoic acid (CH_3COOH) in 50 g of benzene. Molar mass of ethanoic acid = 60 g mol⁻¹

Chapter 1: Some Basic Concepts of Chemistry

Concept Test

Ready for Challenge

Chapter 1: Some Basic Concepts of Chemistry

Q. The density of 3 M solution of NaCl is 1.25 g mL⁻¹. Calculate the molality of the solution.

Pause the video

Time duration : 1 minute

Chapter 1: Some Basic Concepts of Chemistry

Q. The density of 3 M solution of NaCl is 1.25 g mL⁻¹. Calculate the molality of the solution.

Sol.

Assuming volume of the solution = 1 L

Molarity of NaCl solution = $3 \mod L^{-1}$

 \therefore Moles of NaCl = 3 mol

Also, Mass of NaCl = $3 \mod \times 58.5 \mod^{-1}$ = 175.5g

Since, density of solution = 1.25 g mL^{-1} \Rightarrow mass of 1L solution = $1.25 \text{ g mL}^{-1} \times 1000 \text{ml} = 1250 \text{ g}$

- : Mass of the solution = Mass of solute + Mass of solvent
- \Rightarrow 1250 g = 175.5 g + Mass of solvent
- \Rightarrow Mass of solvent = 1074.5 g

Molality (m) = $\frac{\text{Number of moles of solute}}{\text{Mass of solvent in Kg}}$ = $\frac{3 \text{ mol}}{1.0745 \text{ kg}}$

= 2.79 molal

Chapter 1: Some Basic Concepts of Chemistry

Summary

Introduction to the world of Solutions Mass percent = $\frac{\text{Mass of solute}}{\text{Mass of solution}} \times 100\%$ Number of moles of component Mole Fraction of component (χ) Total number of moles of all the components Number of moles of solute Molarity (M Volume of solution in litres Number of moles of solute Molality (m Mass of solvent in Kg

1.6 Reference questions

NCERT Exercise questions : 1.5, 1.6, 1.11, 1.12, 1.29, 1.35

Chapter 1: Some Basic Concepts of Chemistry

End of the Chapter

Chapter 1: Some Basic Concepts of Chemistry